Fuzzy Model Identification:A Review and Comparison of Type-1 and Type-2 Fuzzy Systems

نویسنده

  • Meena Tushir
چکیده

Abstract. Recently, a number of extensions to classical fuzzy logic systems (type-1 fuzzy logic systems) have been attracting interest. One of the most widely used extensions is the interval type-2 fuzzy logic systems. An interval type-2 TSK fuzzy logic system can be obtained by considering the membership functions of its existed type-1 counterpart as primary membership functions and assigning uncertainty to cluster centers, standard deviation of Gaussian membership functions and consequence parameters. This paper presents a review and comparison of type-1 fuzzy logic system and type-2 fuzzy systems in fuzzy modeling and identification. TSK fuzzy model is considered for both type-1 and type-2 fuzzy systems and model parameters are updated using gradient descent method. The experimental study is done on two widely known data, namely chemical plant data and the stock market data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operation Planning of Wind Farms with Pumped Storage Plants Based on Interval Type-2 Fuzzy Modeling of Uncertainties

The operation planning problem encounters several uncertainties in terms of the power system’s parameters such as load, operating reserve and wind power generation. The modeling of those uncertainties is an important issue in power system operation. The system operators can implement different approaches to manage these uncertainties such as stochastic and fuzzy methods. In this paper, new ...

متن کامل

INVENTORY MODEL WITH DEMAND AS TYPE-2 FUZZY NUMBER: A FUZZY DIFFERENTIAL EQUATION APPROACH

An inventory model is formulated with type-2 fuzzy parameters under trade credit policy and solved by using Generalized Hukuhara derivative approach. Representing demand parameter of each expert's opinion is a membership function of type-1 and thus, this membership function again becomes fuzzy. The final opinion of all experts is expressed by a type-2 fuzzy variable. For this present problem, t...

متن کامل

Switching fuzzy modelling and control scheme using T-S fuzzy systems with nonlinear consequent parts

This paper extends the idea of switching T-S fuzzy systems with linear consequent parts to nonlinear ones. Each nonlinear subsystem is exactly represented by a T-S fuzzy system with Lure’ type consequent parts, which allows to model and control wider classes of switching systems and also reduce the computation burden of control synthesis. With the use of a switching fuzzy Lyapunov function, the...

متن کامل

Fault Detection Based on Type 2 Fuzzy system for Single-Rod Electrohydraulic Actuator

Electro-hydraulic systems with regards to the their specific features and applications among other industrial systems including mechanical, electrical and pneumatic systems, have been widely taken into consideration by the scientists and researchers. Due to the fact that the electro-hydraulic system is inherently a nonlinear system, has some problems such as signals saturation, nonlinear effici...

متن کامل

Multiple attribute group decision making with linguistic variables and complete unknown weight information

Interval type-2 fuzzy sets, each of which is characterized by the footprint of uncertainty, are a very useful means to depict the linguistic information in the process of decision making. In this article, we investigate the group decision making problems in which all the linguistic information provided by the decision makers is expressed as interval type-2 fuzzy decision matrices where each of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015